Main Article Content

Abstract

This article examines the effect of a new generation biopreparation (BtmsTr -biopreparati) based on metabolites of the fungus Trichodermaharzianum and the bacterium Bacillus thuringiensis on mung bean plant productivity. According to the results obtained, the melanin-synthesizing mutant strain of the bacterium Bacillus thuringiensisvar.thuringiensis and the ISK-synthesizing Trichodermaharzianumsp. BtmsTr-biopreparation prepared in a 1: 1 ratio from the culture fluids of strain 76 ,the productivity of mung bean was shown to be 77.4% higher than the control variant (Btnmsbiopreparation) or 61.4% higher than the template variant.Researches have shown that the production of this mungbean plant is caused by various aphids, beetles, caterpillars, moths, leaf-eating beetles and fungi that cause fusarium wilt, as well as microbiological objects that cause bacterial blight. Therefore, this biopreparation is recommended for use in increasing crop yields and combating various diseases and pests

Keywords

Bacillus thuringiensis, Trichodermaharzianum, biostimulator, insecticide, melanin, indole acetic acid, spore-crystal, - endotoxin

Article Details

How to Cite
[1]
N. A. Khojamshukurov, F. A. Mustafaqulova, and S. N. Mirzaabdullaeva, “EFFECT OF NEW COMPOSITION MICROBIOLOGICAL BIO PREPARATION ON MUNG BEAN PLANT PRODUCTIVITY”, IEJRD - International Multidisciplinary Journal, vol. 5, no. 4, p. 7, Jun. 2020.

References

  1. Коробов Я.А., Каменек Л.К. 2010. Ростостимулирующее действие дельта-эндотоксина Bacillus thuringiensis на Capsicum annuum. Материалы III-й Международной научно-практической конференции молодых учѐных “Молодѐжь и наука XXI века”. Т.III. “Актуальные вопросы микробиологии, вирусологии, эпизоотологии и биотехнологии”, Ульяновск, 2010. –с. 35-37.
  2. Хужамшукуров Н.А., Халилов И.М., Гузалова А.Г., Мурадов М.М., Троицкая Е.Н., Юсупов Т., Давранов К.Д. 2006. Штамм бактерий Bacillus thuringiensis var.thuringiensis 45M1th№СКВ-349 для производства инсектицидного препарата против насекомых вредителей». Патент РУз. №IAP 03054. 15.05.2006 г.
  3. Abdel-Razek A.S., Talkhanb F.N. and Marwa M. Azzamb. 2013. Efficacy of UV radiation on Bacillus thuringiensis mutants against Lepidopterous Insects. International Journal of Development, Vol.2, No.(1) (2013): 113-126.
  4. AdounignaKassogué, AmadouHamadounDicko, DiakaridiaTraoré, RokiatouFané, Fernando HercosValicente and AmadouHamadounBabana. 2016. Bacillus thuringiensis Strains Isolated from Agricultural Soils in Mali Tested for Their Potentiality on Plant Growth Promoting Traits. British Microbiology Research Journal 14(3):1-7.
  5. Armada E, Probanza A, Roldán A, Azcón R. 2015. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizalspecies improved drought tolerance and oxidative metabolism in Lavanduladentata plants. J.Plant. Physiol. 2015;192:1-12.
  6. Avetisyan S.V., Hovsepyan A.S., Aghajanyan A.E., Azaryan K.G., Petrosyan T.R., Saghyan A.S. Water-soluble bacterial melanin: obtaining, biological activity, application perspectives // 2nd International Scientific Conference of Young Researchers “Contribution of the young generation in the development of biotechnology” Dedicated to the 70 th Anniversary of the National Academy of Sciences of Armenia, Yerevan, October 1-4, 2013, p. 48.
  7. Barboza-Corona JE, Contreras JC, Velázquez-Robledo R, Bautista-Justo M, Gómez-Ramírez M, Cruz-Camarillo R, Ibarra JE. 1999. Selection of chitinolytic strains of Bacillus thuringiensis. Biotechnol Lett 21:1125-9.
  8. Coyne V.E., Al-Harthi L. 1992. Induction of melanin biosysthesis in Vibrio cholerae. Appl. Environ. Microbiol. 58, 2861–2865.
  9. Grondona I., Hermosa R., Tejeda M., Gomis MD., Mateos PF., Bridge PD., Monte E. Garcia Acha I. 1997. Physiological and biochemical characterization of Thrichoderma harzianum, a biological control agent against soilborne fungal plant pathogens. Appl Environ Microbiol 63(8):3189–98.
  10. Reyes-Ramírez A., Escudero-Abarca B.I., Aguilar-Uscanga G., Hayward-Jones P.M., Eleazar Barboza-Coron J. 2004. Antifungal Activity of Bacillus thuringiensis Chitinase and Its Potential for the Biocontrol of Phytopathogenic Fungi in Soybean Seeds. Journal of food science. Vol.69, Nr.5. Pp.131-134.
  11. Raymond B., Johnston P.R., Nielsen-LeRoux C., Lereclus D., Crickmore N. 2010. Bacillus thuringiensis: An impotent pathogen? Trends Microbiol. 18, 189-194.
  12. Kassogué A,Maïga K, Traoré D, Dicko AH, Fané R, Guissou T, Faradji FA, Valicente FH, Babana AH. 2015. Isolation and characterization of Bacillus thuringiensis (Ernst Berliner) strains indigenous to agricultural soils of Mali. African Journal of Agricultural Research. 2015;10(28):2748-2755.
  13. Khujamshukurov N., Yusupov T., Khalilov I., Guzalova A., Muradov M. AndDavranov K. 2001. The Insektisidial Activity of Bacillus thuringiensis Cells. J. Applied Biochemistry and Microbiology, V.37, 6:596-598.
  14. Hoti, S. L., Balaraman, K. 1993. Formation of melanin pigment by a mutant of Bacillus thuringiensis H-14. J. Gen. Microbiol. 139, 2365–2369.
  15. van de Sande W. W., de Kat J., Coppens J., a Ahmed A. O., Fahal A., Verbrugh H., and van Belkum A. 2007. Melanin biosynthesis in Madurella mycetomatis and its effect on susceptibility to itraconazole and ketoconazole. Microbes Infect., 9, 1114-1123.
  16. Liu F, Yang W, Ruan L, Sun M. 2013. A Bacillus thuringiensis host strain with high melanin production for preparation of light-stable biopesticides. Ann Microbiol 63: 1131-1135.
  17. Sansinenea E., Ortiz A. 2015. Melanin: a photoprotection for Bacillus thuringiensis based biopesticides. Biotechnol Lett. V.37:483-490.