Main Article Content


MicroRNAs (miRNAs) play important roles in carcinogenesis. Up to date, miR-124 deregulation has been linked to the malignancy of breast cancer (BC), nasopharyngeal cancer (NPC), bladder cancer (BCa), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), gliobastoma (GB) and hepatocellular carcinoma (HCC). Potentially acting as a tumor growth suppressor, miR-124 was commonly down-regulated in clinical surgical specimens from patients suffering with above cancers. MiR-124 deficiency enhanced the development and progressions of BC, NPC, BCa, NSCLC, CRC, GB and HCC and contributes in the advance of patient’s TNM stage. MiR-124 expression level was reversely correlated with lymph node metastasis of NSCLC patients and survival time of BC patients. MiR-124 was generally down-regulated in above cancer cell lines. Consequently, restored miR-124 over-expression led to the increased in vitro apoptosis, decreased in vitro proliferation, migration and invasion capacities and the decreased in vivo tumorigenesis and malignancy of corresponding cancer cell lines. MiR-124 functions in carcinogenesis through the interactions with diverse genes and proteins. STAT3 was most commonly regulated by miR-124 dysexpression in above cancers, followed by sp1, CD151, CDK4 and NF-kB. LncRNAs including MALAT1, NEATI and HOXA11-ASwere involved in miR-124-mediated tumorigenesis for NPC and NSCLC. MiR-124 plays an important role in tumor cell malignancy and cancer development and progression. Its use in the understanding of carcinogenesis, diagnosis and treatment of cancers is worthy of further study.


Carcinogenesis, miR-124, breast cancer, nasopharyngeal cancer, bladder cancer, colorectal cancer

Article Details

How to Cite
Abdul Wakil Qarluq, Edrees Khan Rahmatzada, Bashir Ahmad, Shuqing Liu, and Ming-Zhong Sun, “MIR-124 DEFICIENCY POTENTIALLY PROMOTES THE PROGRESSIONS OF CERTAIN CANCERS”, IEJRD - International Multidisciplinary Journal, vol. 6, no. 5, p. 15, Sep. 2021.


  1. Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294:858-62.
  2. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science 2001;294:853-8.
  3. Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001;294:862-4.
  4. Ambros V. The functions of animal microRNAs. Nature 2004;431:350-5.
  5. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993;75:855-62.
  6. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75:843-54.
  7. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature 2005;435:834-8.
  8. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006;34:D140-4.
  9. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010;466:835-40.
  10. Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annual review of biophysics 2013;42:217-39.
  11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004;116:281-97.
  12. Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends in cell biology 2007;17:118-26.
  13. Karginov FV, Cheloufi S, Chong MM, Stark A, Smith AD, Hannon GJ. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Molecular cell 2010;38:781-8.
  14. Bracken CP, Szubert JM, Mercer TR, Dinger ME, Thomson DW, Mattick JS, et al. Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic acids research 2011;39:5658-68.
  15. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33.
  16. Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, Function and Role in Cancer. Current genomics 2010;11:537-61.
  17. Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nature reviews Cancer 2011;11:849-64.
  18. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 2002;99:15524-9.
  19. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nature reviews Cancer 2006;6:857-66.
  20. Lu J, He ML, Wang L, Chen Y, Liu X, Dong Q, et al. MiR-26a inhibits cell growth and tumorigenesis of nasopharyngeal carcinoma through repression of EZH2. Cancer research 2011;71:225-33.
  21. Yu L, Lu J, Zhang B, Liu X, Wang L, Li SY, et al. miR-26a inhibits invasion and metastasis of nasopharyngeal cancer by targeting EZH2. Oncology letters 2013;5:1223-8.
  22. Zhang LY, Ho-Fun Lee V, Wong AM, Kwong DL, Zhu YH, Dong SS, et al. MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN. Carcinogenesis 2013;34:454-63.
  23. Deng M, Ye Q, Qin Z, Zheng Y, He W, Tang H, et al. miR-214 promotes tumorigenesis by targeting lactotransferrin in nasopharyngeal carcinoma. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2013;34:1793-800.
  24. Li G, Wu Z, Peng Y, Liu X, Lu J, Wang L, et al. MicroRNA-10b induced by Epstein-Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer letters 2010;299:29-36.
  25. Sun XJ, Liu H, Zhang P, Zhang XD, Jiang ZW, Jiang CC. miR-10b promotes migration and invasion in nasopharyngeal carcinoma cells. Asian Pacific journal of cancer prevention : APJCP 2013;14:5533-7.
  26. He ML, Luo MX, Lin MC, Kung HF. MicroRNAs: potential diagnostic markers and therapeutic targets for EBV-associated nasopharyngeal carcinoma. Biochimica et biophysica acta 2012;1825:1-10.
  27. Lu J, Luo H, Liu X, Peng Y, Zhang B, Wang L, et al. miR-9 targets CXCR4 and functions as a potential tumor suppressor in nasopharyngeal carcinoma. Carcinogenesis 2014;35:554-63.
  28. Patel V, Hajarnis S, Williams D, Hunter R, Huynh D, Igarashi P. MicroRNAs regulate renal tubule maturation through modulation of Pkd1. Journal of the American Society of Nephrology : JASN 2012;23:1941-8.
  29. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Current biology : CB 2002;12:735-9.
  30. Papagiannakopoulos T, Kosik KS. MicroRNA-124: micromanager of neurogenesis. Cell stem cell 2009;4:375-6.
  31. Smerkova K, Hudcova K, Vlahova V, Vaculovicova M, Pekarik V, Masarik M, et al. Label-free and amplification-free miR-124 detection in human cells. International journal of oncology 2015;46:871-7.
  32. Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Science (New York, NY) 2007;317:1220-4.
  33. Baroukh NN, Van Obberghen E. Function of microRNA-375 and microRNA-124a in pancreas and brain. The FEBS journal 2009;276:6509-21.
  34. Lee MR, Kim JS, Kim KS. miR-124a is important for migratory cell fate transition during gastrulation of human embryonic stem cells. Stem cells (Dayton, Ohio) 2010;28:1550-9.
  35. Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nature neuroscience 2009;12:399-408.
  36. Han ZB, Yang Z, Chi Y, Zhang L, Wang Y, Ji Y, et al. MicroRNA-124 suppresses breast cancer cell growth and motility by targeting CD151. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2013;31:823-32.
  37. Wang P, Chen L, Zhang J, Chen H, Fan J, Wang K, et al. Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 2014;33:514-24.
  38. Xia J, Wu Z, Yu C, He W, Zheng H, He Y, et al. miR-124 inhibits cell proliferation in gastric cancer through down-regulation of SPHK1. The Journal of pathology 2012;227:470-80.
  39. Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, et al. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut 2012;61:278-89.
  40. Shi XB, Xue L, Ma AH, Tepper CG, Gandour-Edwards R, Kung HJ, et al. Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 2013;32:4130-8.
  41. Zhang Y, Li H, Han J, Zhang Y. Down-regulation of microRNA-124 is correlated with tumor metastasis and poor prognosis in patients with lung cancer. International journal of clinical and experimental pathology 2015;8:1967-72.
  42. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science (New York, NY) 2011;331:1559-64.
  43. Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, et al. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proceedings of the National Academy of Sciences of the United States of America 2012;109:3024-9.
  44. Sieuwerts AM, Mostert B, Bolt-de Vries J, Peeters D, de Jongh FE, Stouthard JM, et al. mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clinical cancer research : an official journal of the American Association for Cancer Research 2011;17:3600-18.
  45. Hannafon BN, Sebastiani P, de las Morenas A, Lu J, Rosenberg CL. Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer. Breast cancer research : BCR 2011;13:R24.
  46. Li L, Luo J, Wang B, Wang D, Xie X, Yuan L, et al. Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Molecular cancer 2013;12:163.
  47. Dong LL, Chen LM, Wang WM, Zhang LM. Decreased expression of microRNA-124 is an independent unfavorable prognostic factor for patients with breast cancer. Diagnostic pathology 2015;10:45.
  48. Fu Y, Xiong J. MicroRNA-124 enhances response to radiotherapy in human epidermal growth factor receptor 2-positive breast cancer cells by targeting signal transducer and activator of transcription 3. Croatian medical journal 2016;57:457-64.
  49. Chen SM, Chou WC, Hu LY, Hsiung CN, Chu HW, Huang YL, et al. The Effect of MicroRNA-124 Overexpression on Anti-Tumor Drug Sensitivity. PloS one 2015;10:e0128472.
  50. Wang Y, Chen L, Wu Z, Wang M, Jin F, Wang N, et al. miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL. BMC cancer 2016;16:826.
  51. Jiang CF, Li DM, Shi ZM, Wang L, Liu MM, Ge X, et al. Estrogen regulates miRNA expression: implication of estrogen receptor and miR-124/AKT2 in tumor growth and angiogenesis. Oncotarget 2016;7:36940-55.
  52. Du S, Li H, Sun X, Li D, Yang Y, Tao Z, et al. MicroRNA-124 inhibits cell proliferation and migration by regulating SNAI2 in breast cancer. Oncology reports 2016;36:3259-66.
  53. Feng T, Xu D, Tu C, Li W, Ning Y, Ding J, et al. MiR-124 inhibits cell proliferation in breast cancer through downregulation of CDK4. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2015;36:5987-97.
  54. Henderson BE. Nasopharyngeal carcinoma: present status of knowledge. Cancer research 1974;34:1187-8.
  55. Yoshizaki T, Ito M, Murono S, Wakisaka N, Kondo S, Endo K. Current understanding and management of nasopharyngeal carcinoma. Auris, nasus, larynx 2012;39:137-44.
  56. Lo KW, Huang DP. Genetic and epigenetic changes in nasopharyngeal carcinoma. Seminars in cancer biology 2002;12:451-62.
  57. Tao Q, Chan AT. Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments. Expert reviews in molecular medicine 2007;9:1-24.
  58. Chou J, Lin YC, Kim J, You L, Xu Z, He B, et al. Nasopharyngeal carcinoma--review of the molecular mechanisms of tumorigenesis. Head & neck 2008;30:946-63.
  59. Li LL, Shu XS, Wang ZH, Cao Y, Tao Q. Epigenetic disruption of cell signaling in nasopharyngeal carcinoma. Chinese Journal of Cancer 2011;30:231-9.
  60. Peng XH, Huang HR, Lu J, Liu X, Zhao FP, Zhang B, et al. MiR-124 suppresses tumor growth and metastasis by targeting Foxq1 in nasopharyngeal carcinoma. Molecular cancer 2014;13.
  61. Yu L. miR-26a inhibits invasion and metastasis of nasopharyngeal cancer by targeting EZH2. 2013;5:1223-8.
  62. Hu H, Wang G, Li C. miR-124 suppresses proliferation and invasion of nasopharyngeal carcinoma cells through the Wnt/beta-catenin signaling pathway by targeting Capn4. OncoTargets and therapy 2017;10:2711-20.
  63. Xu S, Zhao N, Hui L, Song M, Miao ZW, Jiang XJ. MicroRNA-124-3p inhibits the growth and metastasis of nasopharyngeal carcinoma cells by targeting STAT3. Oncology reports 2016;35:1385-94.
  64. Peng XH, Huang HR, Lu J, Liu X, Zhao FP, Zhang B, et al. MiR-124 suppresses tumor growth and metastasis by targeting Foxq1 in nasopharyngeal carcinoma. Molecular cancer 2014;13:186.
  65. Cheng N, Guo Y. Long noncoding RNA NEAT1 promotes nasopharyngeal carcinoma progression through regulation of miR-124/NF-kappaB pathway. OncoTargets and therapy 2017;10:5843-53.
  66. Shi B, Wang Y, Yin F. MALAT1/miR-124/Capn4 axis regulates proliferation, invasion and EMT in nasopharyngeal carcinoma cells. Cancer biology & therapy 2017;18:792-800.
  67. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: a cancer journal for clinicians 2016;66:7-30.
  68. Celik O, Ekin G, Ipekci T, Budak S, Ilbey YO. Diagnosis and treatment in primary bladder small cell carcinoma: Literature review. Archivio italiano di urologia, andrologia : organo ufficiale [di] Societa italiana di ecografia urologica e nefrologica 2016;88:52-5.
  69. Yuan Q, Sun T, Ye F, Kong W, Jin H. MicroRNA-124-3p affects proliferation, migration and apoptosis of bladder cancer cells through targeting AURKA. Cancer biomarkers : section A of Disease markers 2017;19:93-101.
  70. Xu X, Li S, Lin Y, Chen H, Hu Z, Mao Y, et al. MicroRNA-124-3p inhibits cell migration and invasion in bladder cancer cells by targeting ROCK1. Journal of translational medicine 2013;11:276.
  71. Xiong Y, Wang L, Li Y, Chen M, He W, Qi L. The Long Non-Coding RNA XIST Interacted with MiR-124 to Modulate Bladder Cancer Growth, Invasion and Migration by Targeting Androgen Receptor (AR). Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2017;43:405-18.
  72. Zhang T, Wang J, Zhai X, Li H, Li C, Chang J. MiR-124 retards bladder cancer growth by directly targeting CDK4. Acta biochimica et biophysica Sinica 2014;46:1072-9.
  73. Lombard AP, Mudryj M. The emerging role of the androgen receptor in bladder cancer. Endocrine-related cancer 2015;22:R265-77.
  74. Reck M, Heigener DF, Mok T, Soria JC, Rabe KF. Management of non-small-cell lung cancer: recent developments. Lancet (London, England) 2013;382:709-19.
  75. Yom SS. Accelerated repopulation as a cause of radiation treatment failure in non-small cell lung cancer: review of current data and future clinical strategies. Seminars in radiation oncology 2015;25:93-9.
  76. Ausborn NL, Le QT, Bradley JD, Choy H, Dicker AP, Saha D, et al. Molecular profiling to optimize treatment in non-small cell lung cancer: a review of potential molecular targets for radiation therapy by the translational research program of the radiation therapy oncology group. International journal of radiation oncology, biology, physics 2012;83:e453-64.
  77. Cui Z, Hu Y. MicroRNA-124 suppresses Slug-mediated lung cancer metastasis. European review for medical and pharmacological sciences 2016;20:3802-11.
  78. Ma T, Zhao Y, Wei K, Yao G, Pan C, Liu B, et al. MicroRNA-124 Functions as a Tumor Suppressor by Regulating CDH2 and Epithelial-Mesenchymal Transition in Non-Small Cell Lung Cancer. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2016;38:1563-74.
  79. Lin J, Xu K, Wei J, Heimberger AB, Roth JA, Ji L. MicroRNA-124 suppresses tumor cell proliferation and invasion by targeting CD164 signaling pathway in non-small cell lung cancer. Journal of gene therapy 2016;2.
  80. Li X, Yu Z, Li Y, Liu S, Gao C, Hou X, et al. The tumor suppressor miR-124 inhibits cell proliferation by targeting STAT3 and functions as a prognostic marker for postoperative NSCLC patients. International journal of oncology 2015;46:798-808.
  81. Yang Q, Wan L, Xiao C, Hu H, Wang L, Zhao J, et al. Inhibition of LHX2 by miR-124 suppresses cellular migration and invasion in non-small cell lung cancer. Oncology letters 2017;14:3429-36.
  82. Yu W, Peng W, Jiang H, Sha H, Li J. LncRNA HOXA11-AS promotes proliferation and invasion by targeting miR-124 in human non-small cell lung cancer cells. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2017;39:1010428317721440.
  83. Zhao X, Lu C, Chu W, Zhang B, Zhen Q, Wang R, et al. MicroRNA-124 suppresses proliferation and glycolysis in non-small cell lung cancer cells by targeting AKT-GLUT1/HKII. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2017;39:1010428317706215.
  84. Sun Y, Ai X, Shen S, Lu S. NF-kappaB-mediated miR-124 suppresses metastasis of non-small-cell lung cancer by targeting MYO10. Oncotarget 2015;6:8244-54.
  85. Li S, Mei Z, Hu HB, Zhang X. The lncRNA MALAT1 contributes to non-small cell lung cancer development via modulating miR-124/STAT3 axis. Journal of cellular physiology 2018;233:6679-88.
  86. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: a cancer journal for clinicians 2010;60:277-300.
  87. Gellad ZF, Provenzale D. Colorectal cancer: national and international perspective on the burden of disease and public health impact. Gastroenterology 2010;138:2177-90.
  88. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: a cancer journal for clinicians 2014;64:9-29.
  89. Stricker T, Catenacci DV, Seiwert TY. Molecular profiling of cancer--the future of personalized cancer medicine: a primer on cancer biology and the tools necessary to bring molecular testing to the clinic. Seminars in oncology 2011;38:173-85.
  90. Liu K, Zhao H, Yao H, Lei S, Lei Z, Li T, et al. MicroRNA-124 regulates the proliferation of colorectal cancer cells by targeting iASPP. BioMed research international 2013;2013:867537.
  91. Jinushi T, Shibayama Y, Kinoshita I, Oizumi S, Jinushi M, Aota T, et al. Low expression levels of microRNA-124-5p correlated with poor prognosis in colorectal cancer via targeting of SMC4. Cancer medicine 2014;3:1544-52.
  92. Zhang Y, Zheng L, Huang J, Gao F, Lin X, He L, et al. MiR-124 Radiosensitizes human colorectal cancer cells by targeting PRRX1. PloS one 2014;9:e93917.
  93. Park SY, Kim H, Yoon S, Bae JA, Choi SY, Jung YD, et al. KITENIN-targeting microRNA-124 suppresses colorectal cancer cell motility and tumorigenesis. Molecular therapy : the journal of the American Society of Gene Therapy 2014;22:1653-64.
  94. Yu JZ, Sun N, Bei YB, Li XB, Lu C, Hua LC. Circadian gene hCLOCK contributes to progression of colorectal carcinoma and is directly regulated by tumorsuppressive microRNA124. Molecular medicine reports 2017.
  95. Chen Z, Liu S, Tian L, Wu M, Ai F, Tang W, et al. miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1. Oncotarget 2015;6:38139-50.
  96. Taniguchi K, Sugito N, Kumazaki M, Shinohara H, Yamada N, Matsuhashi N, et al. Positive feedback of DDX6/c-Myc/PTB1 regulated by miR-124 contributes to maintenance of the Warburg effect in colon cancer cells. Biochimica et biophysica acta 2015;1852:1971-80.
  97. Sun Y, Zhao X, Luo M, Zhou Y, Ren W, Wu K, et al. The pro-apoptotic role of the regulatory feedback loop between miR-124 and PKM1/HNF4alpha in colorectal cancer cells. International journal of molecular sciences 2014;15:4318-32.
  98. Zhang J, Lu Y, Yue X, Li H, Luo X, Wang Y, et al. MiR-124 suppresses growth of human colorectal cancer by inhibiting STAT3. PloS one 2013;8:e70300.
  99. Xi ZW, Xin SY, Zhou LQ, Yuan HX, Wang Q, Chen KX. Downregulation of rho-associated protein kinase 1 by miR-124 in colorectal cancer. World journal of gastroenterology 2015;21:5454-64.
  100. Zhou L, Xu Z, Ren X, Chen K, Xin S. MicroRNA-124 (MiR-124) Inhibits Cell Proliferation, Metastasis and Invasion in Colorectal Cancer by Downregulating Rho-Associated Protein Kinase 1(ROCK1). Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2016;38:1785-95.
  101. Baldi I, Huchet A, Bauchet L, Loiseau H. [Epidemiology of glioblastoma]. Neuro-Chirurgie 2010;56:433-40.
  102. Preusser M, de Ribaupierre S, Wohrer A, Erridge SC, Hegi M, Weller M, et al. Current concepts and management of glioblastoma. Annals of neurology 2011;70:9-21.
  103. Skalsky RL, Cullen BR. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene. PloS one 2011;6:e24248.
  104. Sun Y, Zhao X, Zhou Y, Hu Y. miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect. Oncology reports 2012;28:1346-52.
  105. Blenkiron C, Miska EA. miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Human molecular genetics 2007;16 Spec No 1:R106-13.
  106. Cortez MA, Nicoloso MS, Shimizu M, Rossi S, Gopisetty G, Molina JR, et al. miR-29b and miR-125a regulate podoplanin and suppress invasion in glioblastoma. Genes, chromosomes & cancer 2010;49:981-90.
  107. Chen L, Wang X, Wang H, Li Y, Yan W, Han L, et al. miR-137 is frequently down-regulated in glioblastoma and is a negative regulator of Cox-2. European journal of cancer (Oxford, England : 1990) 2012;48:3104-11.
  108. Wu Z, Sun L, Wang H, Yao J, Jiang C, Xu W, et al. MiR-328 expression is decreased in high-grade gliomas and is associated with worse survival in primary glioblastoma. PloS one 2012;7:e47270.
  109. Li D, Chen P, Li XY, Zhang LY, Xiong W, Zhou M, et al. Grade-specific expression profiles of miRNAs/mRNAs and docking study in human grade I-III astrocytomas. Omics : a journal of integrative biology 2011;15:673-82.
  110. Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, et al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC medicine 2008;6:14.
  111. Zhao WH, Wu SQ, Zhang YD. Downregulation of miR-124 promotes the growth and invasiveness of glioblastoma cells involving upregulation of PPP1R13L. International journal of molecular medicine 2013;32:101-7.
  112. An L, Liu Y, Wu A, Guan Y. microRNA-124 inhibits migration and invasion by down-regulating ROCK1 in glioma. PloS one 2013;8:e69478.
  113. Cai JJ, Qi ZX, Chen LC, Yao Y, Gong Y, Mao Y. miR-124 suppresses the migration and invasion of glioma cells in vitro via Capn4. Oncology reports 2016;35:284-90.
  114. Li W, Huang H, Su J, Ji X, Zhang X, Zhang Z, et al. Retraction Note to: miR-124 Acts as a Tumor Suppressor in Glioblastoma via the Inhibition of Signal Transducer and Activator of Transcription 3. Molecular neurobiology 2017;54:8461.
  115. Mucaj V, Lee SS, Skuli N, Giannoukos DN, Qiu B, Eisinger-Mathason TS, et al. MicroRNA-124 expression counteracts pro-survival stress responses in glioblastoma. Oncogene 2015;34:2204-14.
  116. Bosetti C, Turati F, La Vecchia C. Hepatocellular carcinoma epidemiology. Best practice & research Clinical gastroenterology 2014;28:753-70.
  117. Balogh J, Victor D, 3rd, Asham EH, Burroughs SG, Boktour M, Saharia A, et al. Hepatocellular carcinoma: a review. Journal of hepatocellular carcinoma 2016;3:41-53.
  118. Cai QQ, Dong YW, Wang R, Qi B, Guo JX, Pan J, et al. MiR-124 inhibits the migration and invasion of human hepatocellular carcinoma cells by suppressing integrin alphaV expression. Scientific reports 2017;7:40733.
  119. Liu T, Zu CH, Wang SS, Song HL, Wang ZL, Xu XN, et al. PIK3C2A mRNA functions as a miR-124 sponge to facilitate CD151 expression and enhance malignancy of hepatocellular carcinoma cells. Oncotarget 2016;7:43376-89.
  120. Xu L, Dai W, Li J, He L, Wang F, Xia Y, et al. Methylation-regulated miR-124-1 suppresses tumorigenesis in hepatocellular carcinoma by targeting CASC3. Oncotarget 2016;7:26027-41.
  121. Lu Y, Yue X, Cui Y, Zhang J, Wang K. MicroRNA-124 suppresses growth of human hepatocellular carcinoma by targeting STAT3. Biochemical and biophysical research communications 2013;441:873-9.