FIRST-PRINCIPLES INSIGHTS ON THE BONDING MECHANISM OF DIRECT-STACKED BIPHENYLENE NETWORK
DOI:
https://doi.org/10.17605/OSF.IO/4FNZ2Abstract
Recently, a new class of carbon-based nanomaterial (biphenylene network) was synthesized and gained much attention in the scientific community. Using first-principles method, we explored the bonding mechanism of direct-stacked biphenylene networks. Our calculations suggest that the nature of the interaction between the layers of the network is due to van der Waals interaction. This is due to the weak binding energy between the biphenylene networks and the deformed Electron Localization Function in the interface. We anticipate that this work will serve as a reference for further scientific investigation on the biphenylene network.
Downloads
References
Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon Nanotube - A Review on Synthesis, Properties and Plethora of Applications in the Field of Biomedical Science. Sensors International 2020, 1, 100003, doi:10.1016/j.sintl.2020.100003.
Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162, doi:10.1103/RevModPhys.81.109.
Chen, B.; Gao, M.; Zuo, J.-M.; Qu, S.; Liu, B.; Huang, ying-sheng Binding Energy of Parallel Carbon
Nanotubes. Applied Physics Letters 2003, 83, 3570–3571, doi:10.1063/1.1623013.
Choudhary, N.; Hwang, S.; Choi, W. Carbon Nanomaterials: A Review. In Handbook of Nanomaterials Properties; Bhushan, B., Luo, D., Schricker, S.R., Sigmund, W., Zauscher, S., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2014; pp. 709–769 ISBN 978-3-642-31106-2.
Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube–Polymer Composites. Carbon 2006, 44, 1624–1652, doi:10.1016/j.carbon.2006.02.038.
Das, S., Robinson, J. A., Dubey, M., Terrones, H., & Terrones, M. (2015). Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annual Review of Materials Research, 45, 1-27.
David Ferguson, Debra J. Searles, and Marlies Hankel . Biphenylene and Phagraphene as Lithium Ion Battery Anode Materials. ACS Applied Materials & Interfaces 2017, 9 (24) , 20577- 20584. https://doi.org/10.1021/acsami.7b04170
Denis, P. A. (2014). Stability and electronic properties of biphenylene based functionalized nanoribbons and sheets. The Journal of Physical Chemistry C, 118(43), 24976-24982.
Fan, Q.; Yan, L.; Tripp, M.W.; Krejčí, O.; Dimosthenous, S.; Kachel, S.R.; Chen, M.; Foster, A.S.; Koert, U.; Liljeroth, P.; et al. Biphenylene Network: A Nonbenzenoid Carbon Allotrope. Science 2021, 372, 852–856, doi:10.1126/science.abg4509.
Farzin, M.A.; Abdoos, H. A Critical Review on Quantum Dots: From Synthesis toward Applications in
Electrochemical Biosensors for Determination of Disease-Related Biomolecules. Talanta 2021, 224,
, doi:10.1016/j.talanta.2020.121828.
Garrity, K.F.; Bennett, J.W.; Rabe, K.M.; Vanderbilt, D. Pseudopotentials for High-Throughput DFT
Calculations. Computational Materials Science 2014, 81, 446–452,do i:10. 1016/j. comm. atsci. 2 0 13 .08 .053
Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials. J Phys Condens Matter 2009, 21, 395502, doi:10.1088/0953-8984/21/39/395502.
Giannozzi, P.; Baseggio, O.; Bonfà, P.; Brunato, D.; Car, R.; Carnimeo, I.; Cavazzoni, C.; de Gironcoli, S.; Delugas, P.; Ferrari Ruffino, F.; et al. Quantum ESPRESSO toward the Exascale. J. Chem. Phys. 2020, 152, 154105, doi:10.1063/5.0005082.
Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871, doi:10.1103/PhysRev.136.B864.
Koumpouras, K.; Larsson, J.A. Distinguishing between Chemical Bonding and Physical Binding Using
Electron Localization Function (ELF). J. Phys.: Condens. Matter 2020, 32, 315502, doi:10.1088/1361-
X/ab7fd8.
Luo, Y., Ren, C., Xu, Y., Yu, J., Wang, S., & Sun, M. (2021). A first principles investigation on the structural, mechanical, electronic, and catalytic properties of biphenylene. Scientific reports, 11(1), 1-6.
Miyashiro, D.; Hamano, R.; Umemura, K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterials 2020, 10, 186, do i:10 .3390/ nano1 0020186.
Mohammed M. Obeid, Qiang Sun. Assembling biphenylene into 3D porous metallic carbon allotrope for promising anode of lithium-ion batteries. Carbon 2022, 188 , 95- 103. h ttps:/ /doi. /10.1 016/j .ca rbo n.2021.11.056
Ould NE, M.L.; Boujnah, M.; Benyoussef, A.; Kenz, A.E. Electronic and Electrical Conductivity of AB and AA-Stacked Bilayer Graphene with Tunable Layer Separation. J Supercond Nov Magn 2017, 30, 1263–1267, doi:10.1007/s10948-016-3910-7.
Peng-Fei Liu, Jingyu Li, Chi Zhang, Xin-Hai Tu, Junrong Zhang, Ping Zhang, Bao-Tian Wang, David J.Singh. Type-II Dirac cones and electron-phonon interaction in monolayer biphenylene from first-principles calculations. Physical Review B 202 1, 104 ( 23) https ://doi.org 10.1103/ Phys RevB.1 0 4.2354 22
Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868, doi:10.1103/PhysRevLett.77.3865.
Pido, A. A. and Munio, A. A. Z. (2022). Computational Modelling Of Cellulose And Carbon-Based Nanowires Using First Principles Density Functional Theory. International Engineering Journal For Research & Development, 7(1), 7. https://doi.org/10.17605/OSF.IO/GTC96
Pido, A. A. G. (2022). ENERGY BARRIERS OF N2 ADSORPTION ON SiNR USING NUDGED ELASTIC BAND METHOD. International Engineering Journal For Research & Development, 7(1), 9.
https://doi.org/10.17605/OSF.IO/F8B2C
Pido, A. A. G. (2022). TOPOLOGICAL ANALYSES OF THE ELECTRONIC DENSITY OF H-NbSe2 COMPLEXES. International Engineering Journal For Research & Development, 7(1), 7. https://doi.org/10.17605/OSF.IO/NCS3V
Pido, A. A. G., & Pagcaliwagan, B. P. (2022). First principles calculations of the electronic properties of O- and O2-NbSe2 complexes. International Journal of Computing Sciences Research, 6.
Ren, Y., Qiao, Z., & Niu, Q. (2016). Topological phases in two-dimensional materials: a review. Reports on Progress in Physics, 79(6), 066501.
Savin, A., Becke, A. D., Flad, J., Nesper, R., Preuss, H., & Von Schnering, H. G. (1991). A new look at electron localization. Angewandte Chemie International Edition in English, 30(4), 409-412.
Savin, A., Nesper, R., Wengert, S., & Fässler, T. F. (1997). ELF: The electron localization function. Angewandte Chemie International Edition in English, 36(17), 1808-1832.
The Electronic Properties of the Graphene and Carbon Nanotubes: Ab Initio Density Functional Theory
Investigation Available online: https://www.hindawi.com/journals/isrn/2012/416417/ (accessed on 26 April 2021).
Yanfeng Ge, Zhicui Wang, Xing Wang, Wenhui Wan, Yong Liu. Superconductivity in the two-dimensional onbenzenoid biphenylene sheet with Dirac cone. 2D Materials 2022, 9 (1) , 015035. https://doi.org/10.1088/2053-1583/ac4573
Zeng, M.; Xiao, Y.; Liu, J.; Yang, K.; Fu, L. Exploring Two-Dimensional Materials toward the Next-
Generation Circuits: From Monomer Design to Assembly Control. Chem. Rev. 2018, 118, 6236–6296,
doi:10.1021/acs.chemrev.7b00633.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 IEJRD

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.















